Szeregi potęgowe
Fanabela: Wyznaczyć promień i przedział zbieżności szeregu:
∑ xn sin 1n
∑ (3n)/(n+1) xn
21 kwi 10:43
Fanabela: Jeszcze jeden przykład z którym mam problem
∑(2+(−1)n) xn
21 kwi 10:51
Adamm:
n√|xnsin(1/n)|=|x|*n√sin(1/n)→|x| zbieżny dla |x|<1
dla x=1 szereg porównywalny z 1/n, rozbieżny
dla x=−1 szereg zbieżny z kryt. Dirichleta
x∊[−1, 1)
n√|3n/(n+1)xn|=3/n√n+1*|x|→3|x|, zbieżny dla |x|<1/3
dla x=1/3 szereg harmoniczny, rozbieżny
dla x=−1/3 szereg anharmoniczny, zbieżny
x∊[−1/3, 1/3)
n√|xn(2+(−1)n)|=n√2+(−1)n|x|→|x|, zbieżny dla |x|<1
dla x=±1, to nie spełnia warunku koniecznego
x∊(−1, 1)
21 kwi 22:30