1 | ||
∑n=0∞xn= | ||
1−x |
d | d | 1 | ||
(∑n=0∞xn)= | ||||
dx | dx | 1−x |
1 | ||
∑n=0∞nxn−1=− | (−1) | |
(1−x)2 |
1 | ||
∑n=1∞nxn−1= | ||
(1−x)2 |
1 | ||
∑n=0∞(n+1)xn= | ||
(1−x)2 |
d | d | 1 | |||
(∑n=0∞(n+1)xn)= | ( | ) | |||
dx | dx | (1−x)2 |
2 | ||
∑n=0∞(n+1)nxn−1=− | (−1) | |
(1−x)3 |
2 | ||
∑n=1∞(n+1)nxn−1= | ||
(1−x)3 |
2 | ||
∑n=0∞(n+2)(n+1)xn= | ||
(1−x)3 |
d | d | 2 | |||
(∑n=0∞(n+2)(n+1)xn)= | ( | ) | |||
dx | dx | (1−x)3 |
6 | ||
∑n=0∞(n+2)(n+1)nxn−1=− | (−1) | |
(1−x)4 |
6 | ||
∑n=1∞(n+2)(n+1)nxn−1=− | ||
(1−x)4 |
6 | ||
∑n=0∞(n+3)(n+2)(n+1)xn=− | ||
(1−x)4 |
8 | 12 | 1 | ||||
∑n=0∞Snxn=x(∑n=0∞Snxn)+ | − | − | +1 | |||
(1−x)3 | (1−x)2 | 1−x |
8 | 4 | 3 | ||||
G(x)=xG(x)+ | − | + | +1 | |||
(1−x)3 | (1−x)2 | 1−x |
8 | 12 | 3 | ||||
G(x)(1−x)= | − | + | +1 | |||
(1−x)3 | (1−x)2 | 1−x |
8 | 12 | 3 | 1 | |||||
G(x)= | − | + | + | |||||
(1−x)4 | (1−x)3 | (1−x)2 | 1−x |
4 | ||
Sn= | (n+3)(n+2)(n+1)−6(n+2)(n+1)+3(n+1)+1 | |
3 |
n*(n+1)*(2n+1) | ||
1) Sn=∑(k=1 do n) k2= | ||
6 |
500*501*1001 | ||
=4* | −500 | |
6 |