| 1 | ||
∑n=0∞xn= | ||
| 1−x |
| d | d | 1 | ||
(∑n=0∞xn)= | ||||
| dx | dx | 1−x |
| 1 | ||
∑n=0∞nxn−1=− | (−1) | |
| (1−x)2 |
| 1 | ||
∑n=1∞nxn−1= | ||
| (1−x)2 |
| 1 | ||
∑n=0∞(n+1)xn= | ||
| (1−x)2 |
| d | d | 1 | |||
(∑n=0∞(n+1)xn)= | ( | ) | |||
| dx | dx | (1−x)2 |
| 2 | ||
∑n=0∞(n+1)nxn−1=− | (−1) | |
| (1−x)3 |
| 2 | ||
∑n=1∞(n+1)nxn−1= | ||
| (1−x)3 |
| 2 | ||
∑n=0∞(n+2)(n+1)xn= | ||
| (1−x)3 |
| d | d | 2 | |||
(∑n=0∞(n+2)(n+1)xn)= | ( | ) | |||
| dx | dx | (1−x)3 |
| 6 | ||
∑n=0∞(n+2)(n+1)nxn−1=− | (−1) | |
| (1−x)4 |
| 6 | ||
∑n=1∞(n+2)(n+1)nxn−1=− | ||
| (1−x)4 |
| 6 | ||
∑n=0∞(n+3)(n+2)(n+1)xn=− | ||
| (1−x)4 |
| 8 | 12 | 1 | ||||
∑n=0∞Snxn=x(∑n=0∞Snxn)+ | − | − | +1 | |||
| (1−x)3 | (1−x)2 | 1−x |
| 8 | 4 | 3 | ||||
G(x)=xG(x)+ | − | + | +1 | |||
| (1−x)3 | (1−x)2 | 1−x |
| 8 | 12 | 3 | ||||
G(x)(1−x)= | − | + | +1 | |||
| (1−x)3 | (1−x)2 | 1−x |
| 8 | 12 | 3 | 1 | |||||
G(x)= | − | + | + | |||||
| (1−x)4 | (1−x)3 | (1−x)2 | 1−x |
| 4 | ||
Sn= | (n+3)(n+2)(n+1)−6(n+2)(n+1)+3(n+1)+1 | |
| 3 |
| n*(n+1)*(2n+1) | ||
1) Sn=∑(k=1 do n) k2= | ||
| 6 |
| 500*501*1001 | ||
=4* | −500 | |
| 6 |