3−2x | ||
( | )1\ln(2−x) | |
x |
3−2 x | ||
( | )1/ln(2−x) = eln((3−2x)/x)/ln(2−x) | |
x |
ln((3−2x)/x) | (ln((3−2x)/x))' | |||
limx→1 | = limx→1 | = | ||
ln(2−x) | (ln(2−x))' |
3/(x (−3+2 x)) | ||
= limx→1 | = 3 | |
−(1/(2 − x)) |
3−2 x | ||
lim{x→1}( | )1/ln(2−x) = e3 | |
x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |