sinγ = sin[180o − (α + β)] = sin(α + β)
| c | a − b | d | a − b | |||||
Z twierdzenia sinusów: | = | i | = | |||||
| sinα | sin(α + β) | sinβ | sin(α + β) |

| h | h | |||
tg α= | ⇒ x = | |||
| x | tg α |
| h | h | |||
tg β= | ⇒ y = | |||
| y | tg β |
| h | h | ||
+ | = a−b | ||
| tg α | tg β |
| 1 | 1 | |||
h( | + | ) = a−b | ||
| tg α | tg β |
| tg β + tg α | ||
h* | = a−b | |
| (tg α)*(tg β) |
| (a−b)*(tg α)*(tg β) | ||
h = | ||
| tg β + tgα |
| h | ||
sin α = | ||
| c |
| h | (a−b)*(tg α)*(tg β) | |||
c = | = | |||
| sin α | (sin α)*(tg β + tg α) |