| 3x+1 | 1 | |||
limx→2 | = | |||
| 5x+4 | 2 |
| 3x+1 | 1 | 2(3x+1)−1*(5x+4) | ||||
| | − | | < ε ⇔ | | | < ε ⇔ | |||
| 5x+4 | 2 | 2(5x+4) |
| 6x+2−5x−4 | x−2 | |||
| | | < ε ⇔ | | < ε | ||
| 2(5x+4) | 2(5x+4) |
| x−2 | |x−2| | |||
| | | < | |||
| 2(5x+4) | 8 |
| |x−2| | |
< ε ⇔ |x−2| < 8ε ⇔ −8ε < x−2 < 8ε ⇔ 2−8ε < x < 2+8ε | |
| 8 |
| 3x+1 | 1 | |||
∀ε>0 ∃δ=8ε ∀x∊(2−δ; 2+δ) | | − | | < ε ⇔ | ||
| 5x+4 | 2 |
| 3x+1 | 1 | |||
limx→2 | = | |||
| 5x+4 | 2 |