matematykaszkolna.pl
granica ciągu ajronn: oblicz granice ciagu (o ile istnieje) o nastepujacym wyrazie ogolnym:
 1 
an = nn +

pierwiastek jest nad calym wyrazeniem
 n 
 1 
moim zdaniem pierwiastek mozna zamienic na

gdzie to dąży do zera więc mamy wynik jeden
 n 
bo cos do potegi 0 daje 1, pomocy...
15 kwi 13:47
ajronn:
 1 1 
mialo byc

a nie

w tresci
 4 n 
15 kwi 13:48
ajronn: juz poradzilem sobie z tym problemem, trzeba wykorzystac twierdzenie o 3 ciagach
15 kwi 13:54