√x2−6x+x | ||
b= limx→∞ (√x2−6x−x)= limx→∞ (√x2−6x−x) | = | |
√x2−6x+x |
x2−6x−x2 | −6x | −6 | ||||
limx→∞ | = limx→∞ | = | =−3 | |||
√x2−6x+x | √x2−6x+x | 2 |
√x2−6x−x | ||
b= limx→−∞ (√x2−6x+x)= limx→−∞ (√x2−6x+x) | =3 | |
√x2−6x−x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |