1 | 1 | |||
sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x=1− | *4*sin2xcos2x=1− | sin22x | ||
2 | 2 |
3 | ||
sin4x+cos4x= | ||
4 |
3 | ||
(sin2x+cos2x)2−2sinxcosx= | ||
4 |
3 | ||
1−2sin2x= | ||
4 |
1 | ||
sin2x= | ||
2 |
3 | ||
(sin2x+cos2x)−2sin2xcos2x= | ||
4 |
1 | 3 | |||
1− | (2sinxcosx)2= | |||
2 | 4 |
1 | 3 | |||
1− | (sin2x)2= | |||
2 | 4 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |