√n2+n−n | (√n2+n−n)(√n2+n+n) | |||
an = | = | = | ||
1 | 1(√n2+n+n) |
(√n2+n)2−n2 | n2+n−n2 | |||
= | = | |||
√n2+n+n | √n2+n+n |
n | n | n | ||||
= | = | = | = | |||
√n2+n+n | √n2(1+1n)+n | n*√(1+1n)+n |
n | 1 | |||
= | → n→+∞ | |||
n(√1+1n+1) | √1+1n+1 |
1 | 1 | 1 | ||||
→ | = | = | ||||
√1+1∞+1 | √1+0+1 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |