| 1+2x | ||
f(x)=ln3√ | ||
| 1−x |
| 1 | ||
Można to zapisać funkcje w takiej postaci: f(x)= | *(ln(1+2x)+ln(1−x)) | |
| 3 |
| (−1)n+1*(2x)n | ||
ln(1+2x)=∑(od n=1 do ∞) [ | ] | |
| n |
| (−1)n+1*(−x)n | ||
ln(1−x)=∑(od n=1 do ∞)[ | ] | |
| n |
| 1+2x | 1 | (−1)n+1*2n*xn−(−1)n+1*(−1)n*xn | ||||
ln3√ | = | ∑(od n=1 do ∞)[ | ] | |||
| 1−x | 3 | n |
| 1 | xn | ||
∑(od n=1 do ∞)[ | ((−1)n+1*2n−(−1)n+1*(−1)n] | ||
| 3 | n |
| 1 | ||
Powinno być f(x)= | *(ln(1+2x)−ln(1−x)) | |
| 3 |
| 1 | xn | |||
Odpowiedź | ∑(od n=1 do ∞) | [(−1}n−1*2n+1)] | ||
| 3 | n |
| 1 | 1−(−2)n | |||
f(x)= | ∑n≥1 | xn | ||
| 3 | n |
| 1 | xn | |||
f(x)= | *∑n>=1[ | *(−1)n+1][2n+1] | ||
| 3 | n |