1) P=πr2+πr*l
P−πr2=π*r*l
| P−πr2 | P | |||
l= | = | −r | ||
| π*r | πr |
| P | P2 | 2P | ||||
r2+h2=( | −r)2⇔h2= | − | ||||
| πr | π2r2 | π |
| 1 | ||
V= | π*r2*h | |
| 3 |
| 1 | π2 | P2 | 2P | |||||
V2= | *π2*r4*h2 ⇔V2(r)= | *r4*( | − | ) | ||||
| 9 | 9 | π2r2 | π |
| π2 | P2r2 | 2P*r4 | ||||
V2(r)=f(r)= | *( | − | ) | |||
| 9 | π2 | π |
| π2 | 2P2*r | 8P*r3 | ||||
f'(r)= | *( | − | ) | |||
| 9 | π2 | π |
| 2P2*r | 8P*r3 | |||
f'(r)=0⇔( | − | )=0, r>0⇔ | ||
| π2 | π |
| 2p2 | 8r2 | |||
r*( | − | )=0 | ||
| π2 | π |
| 2P2 | 8r2 | ||
− | ) =0 /*π2 /:2 | ||
| π2 | π |
| P | ||
r2= | ||
| 4π |
| √P | √P | |||
r= | lub r=− | ∉D | ||
| 2√π | 2√π |
| 2P | ||
h2= | ||
| π |
| √P | ||
f'(r)>0 dla r∊(0, | ⇔ | |
| 2 |
| √P | ||
dla r= | funkcja f(r) ma największą wartość, w takim razie | |
| 2 |
| √P | ||
Vmax=V( | ) | |
| 2√π |
| 1 | P | √2P | P√2P | |||||
Vmax= | π* | * | = | |||||
| 3 | 4π | √π | 12√π |