| dx | 2x+2 | |||
=∫ | − ∫ | dx | ||
| (x+1)2+2 | (x2+2x+3)2 |
| 1 | x+1 | 1 | ||||
= | atan | + | ||||
| √2 | √2 | x2+2x+3 |
| x2 + 1 | x2 + 1 + 2x+2 − 2x − 2 | |||
∫ | dx = ∫ | dx = | ||
| (x2+2x+3)2 | (x2+2x+3)2 |
| x2 + 2x + 3 | 2x+2 | |||
= ∫ | dx − ∫ | dx = | ||
| (x2+2x+3)2 | (x2+2x+3)2 |
| 1 | 2x+2 | |||
= ∫ | dx − ∫ | dx = (*) | ||
| x2+2x+3 | (x2+2x+3)2 |
| dt | ds | |||
(*) = ∫ | − ∫ | = .... i masz już takie postacie całki, że bez problemu | ||
| t2+2 | s |
| √2 | (x+1)√2 | 1 | ||||
wyszło mi | arctg | + | + C | |||
| 2 | 2 | x2+2x+3 |
| ds | ||
Ile wynosi całka: ∫ | ? | |
| s |
| ds | ||
fuck ... miało być ∫ | ![]() | |
| s2 |