6−2x | ||
f' = | g = x2−x | |
2√6x−x2 |
6−2x | ||
i zostało √6x−x2(x2−x) − całka (x2−x) | dx, całkę tą rozwiązałem metodą | |
2√6x−x2 |
6−2x | 2(3−x) | 3−x | |||
= | = | ||||
2√6x−x2 | 2√6x−x2 | √6x−x2 |
(x2−x)(3−x) | ||
(x2−x)√6x−x2 − ∫ | dx | |
√6x−x2 |
6 | ||
x= | ||
1+t2 |
6t | ||
xt= | ||
1+t2 |
0(1+t2)−6*2t | ||
dx= | dt | |
(1+t2)2 |
12t | ||
dx=− | dt | |
(t2+1)2 |
11−t2 | ||
2x−1= | ||
1+t2 |
11−t2 | 6t | −12t | ||
∫ | dt | |||
1+t2 | 1+t2 | (1+t2)2 |
11t2−t4 | ||
−72∫ | dt | |
(1+t2)4 |
72t4−792t2 | ||
∫ | dt= | |
(1+t2)4 |
a5t5+a4t4+a3t3+a2t2+a1t+a0 | b1t+b0 | ||
+∫ | dt | ||
(1+t2)3 | 1+t2 |
11((t2+1)−1)−((t2+1)−1)2 | ||
−72∫ | dt | |
(1+t2)4 |
11(t2+1)−11−(t2+1)2+2(t2+1)−1)2 | ||
−72∫ | dt | |
(1+t2)4 |
−13(t2+1)+12+(t2+1)2 | ||
72∫ | dt | |
(1+t2)4 |
1 | 1 | 1 | ||||
72(∫ | dt−13∫ | dt+12∫ | dt) | |||
(1+t2)2 | (1+t2)3 | (1+t2)4 |
dt | ||
∫ | =arctan(t)+C | |
(1+t2) |
dt | 1 | x | 1 | ||||
∫ | = | + | arctan(x)+C | ||||
(1+t2)2 | 2 | 1+x2 | 2 |
dt | 1 | x | 3 | x | 3 | |||||
∫ | = | + | + | arctan(x)+C | ||||||
(1+t2)3 | 4 | (1+x)2 | 8 | 1+x2 | 8 |
dt | ||
∫ | = | |
(1+t2)4 |
1 | x | 5 | x | 5 | x | 5 | ||||
+ | + | + | arctan(x)+C | |||||||
6 | (1+x2)3 | 24 | (1+x)2 | 16 | 1+x2 | 16 |