| π | π | 5 | ||||
zał. x∊(kπ, | +kπ), k∊C ⋀ x∊( | +kπ, | π+kπ), k∊C | |||
| 2 | 12 | 12 |
| 1 | 2 | ||
< | / *3 | ||
| 1−log2(sin2x) | 3 |
| 3 | |
−2<0 | |
| 1−log2(sin2x) |
| log2(sin2x)2+1 | |
<0 | |
| log2(2sin2x) |
| log2[2*(sin2x)2] | |
<0 | |
| log2(2sin2x) |
| 2 | ||
z założenia wiadomo, że sin2x∊(0,1), więc podstawa logarytmu | >1, więc znak | |
| sin2x |
| 1 | ||
sin2(2x)< | ||
| 2 |
| √2 | √2 | |||
− | <sin2x< | |||
| 2 | 2 |
| π | π | |||
− | +kπ<x< | +kπ | ||
| 8 | 8 |
| π | π | |||
x∊(− | +kπ, | +kπ) | ||
| 8 | 8 |
| π | π | 13 | 9 | |||||
x∊( | , | )∨( | π, | π) | ||||
| 12 | 8 | 12 | 8 |
| π | π | 3 | 5 | 13 | 9 | 11 | 17 | |||||||||
x∊( | , | )∨( | π, | π)∨( | π, | π)∨( | π, | π) | ||||||||
| 12 | 8 | 8 | 12 | 12 | 8 | 8 | 12 |
ano są 4
−π/4<2x<π/4 oraz 3π/4<2x<5π/4