2 | 3 | 1 | ||||
A(x)(1−x)= | − | + | ||||
(1+x)3 | (1+x)2 | 1+x |
d | d | 1 | ||
(∑n=0∞(−1)nxn)= | ||||
dx | dx | 1+x |
−1 | ||
∑n=0∞n(−1)nxn−1= | ||
(1+x)2 |
−1 | ||
∑n=1∞n(−1)nxn−1= | ||
(1+x)2 |
−1 | ||
∑n=0∞(n+1)(−1)n+1xn= | ||
(1+x)2 |
1 | ||
∑n=0∞(n+1)(−1)nxn= | ||
(1+x)2 |
d2 | d2 | 1 | ||
(∑n=0∞(−1)nxn)= | ||||
dx2 | dx2 | 1+x |
(−1)(−2) | ||
∑n=0∞n(n−1)(−1)nxn−2= | ||
(1+x)3 |
2 | ||
∑n=2∞n(n−1)(−1)nxn−2= | ||
(1+x)3 |
2 | ||
∑n=0∞(n+2)(n+1)(−1)n+2xn= | ||
(1+x)3 |
2 | ||
∑n=0∞(n+2)(n+1)(−1)nxn= | ||
(1+x)3 |
2 | 3 | 1 | ||||
A(x)(1−x)= | − | + | ||||
(1+x)3 | (1+x)2 | 1+x |
2−3(1+x)+(1+x)2 | ||
A(x)= | ||
(1+x)3(1−x) |
x2+2x+1−3x−3+2 | ||
A(x)= | ||
(1+x)3(1−x) |
x2−x | ||
A(x)= | ||
(1+x)3(1−x) |
−x(1−x) | ||
A(x)= | ||
(1+x)3(1−x) |
−x | ||
A(x)= | ||
(1+x)3 |
−x−1+1 | ||
A(x)= | ||
(1+x)3 |
1 | 1 | |||
A(x)= | − | |||
(1+x)3 | (1+x)2 |
1 | ||
A(x)=∑n=0∞ | (n+2)(n+1)(−1)nxn−∑n=0∞(n+1)(−1)nxn | |
2 |
1 | ||
an= | (n+2)(n+1)(−1)n−(n+1)(−1)n | |
2 |
1 | ||
an= | ((n+2)(n+1)−(2n+2))(−1)n | |
2 |
1 | ||
an= | (n2+3n+2−2n−2)(−1)n | |
2 |
1 | ||
an= | n(n+1)(−1)n | |
2 |