sin3x | 3x | 3 | 3 | |||||
= limx→0 | * | = [1* | ] = | |||||
3x | 4x | 4 | 4 |
(x−3)(−1)[x] | (−1)[x] | ||
= | |||
x2−9 | x+3 |
(−1)[x] | (−1)[x] | |||
limx→3− | = 1/6, limx→3+ | = −1/6 | ||
x+3 | x+3 |
t−1 | 1 | |||
limt→1 m | =limt→1 m | = m/3 | ||
t3−1 | t2+t+1 |
xn−1 | ||
limx→1 | =limx→1 xn−1+...+1 = n | |
x−1 |
t−5 | 1 | |||
limt→5 | = limt→5 | = 1/10 | ||
t2−25 | t+5 |
√x2+1−√x+1 | x−1 | ||
=− | *(1+√x+1)→1 | ||
1−√x+1 | √x2+1+√x+1 |
√x2+25+5 | ||
= | →5 | |
√x2+1+1 |