Kwantyfikatory i dziedziny
Pawel96: Uzupełnij dziedziny i kwantyfikatory:
x∊ y∊ z∊ dla x/y=z
Wydaje mi się, że może być tak:
∀x∊R ∀y∊R\{0} ∃!z∊R
Czy tkoś widzi jakieś błędy lub ma jakąś sugestię odnośnie poprawności zadania?
15 mar 10:31
Blee:
∃! <−−− to ma oznaczać 'nie istnieje'
15 mar 10:41
Pawel96: Że istnieje takie jedno
15 mar 10:42
Blee:
A co to za zwrot
Gdzie 'coś takiego' miałeś podane
15 mar 10:45
Blee:
∃ −−− istnieje
∀ −−− dla każdego
ewentualnie zaprzeczenia dostawiamy do tego (czyli ~∃ i ~∀)
ale ∃! to nie wiem co to jest
15 mar 10:46
Pawel96: Dobra, bardziej naukowo − ∃! − daje jedną, unikalną wartość należącą do zbioru liczb
rzeczywistych
15 mar 10:48
Pawel96: Aaa tak sie nie pisze!
Dziekuje za wyjasnienie sytuacji!
15 mar 10:48
Blee:
tak naprawdę tutaj masz praktycznie każdy możliwy układ wybrać ... o ile u Ciebie to było
∀x∊R ∀y∊R/{0} ∃z∊R
15 mar 10:48
Blee:
No chyba że jakoś się zmieniły wytyczne co do oznaczeń i teraz dodaje się wykrzyknik (nie
wiedzieć po co i dlaczego)
15 mar 10:50
Pawel96: Ok, dziekuje serdecznie za pomoc i znalezienie błędu!
15 mar 10:51