n2+2 | n | |||
Jeżeli limn→∞( | − | − 2a)=0 to: | ||
2n−1 | 2 |
1 | ||
A. a= | ||
8 |
1 | ||
B. a= | ||
4 |
1 | ||
C. a= | ||
2 |
n2+2 | n−4a | |||
limn→∞( | − | )=0 | ||
2n−1 | 2 |
8an+n−4a+4 | ||
limn→∞ | =0 | |
4n−2 |
(8a+1)n | |
=0 | |
4n |
1 | ||
a=− | ||
8 |
n2+2 | n | 2(n2+2)−(2n−1)n | 4+n | ||||
− | = | = | →1/4 | ||||
2n−1 | 2 | 2(2n−1) | 2(2n−1) |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |