1/ rysunek
2/ z treści zadania 2Pp=Pb
| a2√3 | ||
2* | =3aH | |
| 4 |
| a√3 | ||
hp= | = .....=3H | |
| 2 |
| hp | 3H | |||
sinα= | = | |||
| d | H√13 |

| a2√3 | a2√3 | |||
3a*H = 2* | = | /:3a | ||
| 4 | 2 |
| a√3 | ||
H = | ||
| 6 |
| a√3 | ||
h = | ||
| 2 |
| a2*3 | 39a2 | |||
x2 = H2+a2 = | +a2 = | |||
| 36 | 36 |
| a√39 | ||
x = | ||
| 6 |
| a | 3a2 | a2 | 12a2 | |||||
y2 = H2+( | )2 = | + | = | |||||
| 2 | 36 | 4 | 36 |
| a√12 | ||
y = | ||
| 6 |
| 3a2 | 39a2 | 12a2 | a√39 | a√12 | |||||
= | + | − 2* | * | *cos α /*36 /:a2 | |||||
| 4 | 36 | 36 | 6 | 6 |
| 2 | ||
cosα = | ||
| √13 |
| 3 | 3√13 | |||
sinα = √1−(4/13) = √9/13 = | = | |||
| √13 | 13 |
2 sposób
hp=3r , r −−− dł . promienia okręgu wpisanego w podstawę
to a= 2r√3 −−−− dł. krawędzi podstawy
Pp = 3r2√3
z treści zadania 6r2√3= 6r√3*H ⇒ H=r
d=√a2+H2= √12r2+r2= r√13
| 3r | ||
sinα= | ||
| d |