π | ||
f(x) =cos(2x− | ) + 1 | |
6 |
1 | ||
f(x) = |cosx− | | − 12 | |
2 |
x | ||
f(x)= 3 tg2 | − 1 | |
3 |
π | π | π | ||||
f(x) = 0 ⇔ cos( 2 x − | ) = − 1 ⇔ 2 x − | = π + 2π*k ⇔ 2 x =π + | + 2π*k⇔ | |||
6 | 6 | 6 |
π | ||
⇔ x = 0,5 π + | + π*k, k − dowolna liczba całkowita | |
12 |
1 | ||
|cosx− | |= U{1}[2} | |
2 |
1 | 1 | |||
cosx− | = | |||
2 | 2 |
1 | 1 | |||
cosx− | = − | |||
2 | 2 |
π | ||
cosx= | ||
2 |
π | ||
x= | +kπ | |
2 |