Obliczyć metodą prze części
Jas: ∫x(tgx)2dx
9 mar 09:02
kochanus_niepospolitus:
zanim to zrobimy to:
| sin2x | | 1−cos2x | |
∫x(tgx)2 dx = ∫ x |
| dx = ∫ x |
| dx = |
| cos2x | | cos2x | |
| 1 | | 1 | |
= ∫ x( |
| − 1) dx = ∫ x* |
| dx − ∫ x dx = |
| cos2x | | cos2x | |
// i teraz pierwsza przez części
u' = 1 v = tgx
i liczysz //
= ....
9 mar 09:31
jc: ∫x tg2x dx = ∫ x [(tg x)' −1 ] dx = x tg x − ∫tg x dx − ∫x dx
9 mar 09:51