n2 + 1 − n2 | 1 | |||
an = | = | |||
√n2 + 1 + n | √n2 + 1 + n |
a2 − b2 | ||
a − b = | ||
a + b |
√n2+1+n | ||
lim n→∞(√n2+1−n)= lim n→∞ (√n2+1−n)* | i ciąg dalej ![]() | |
√n2+1+n |
1 | 1 | 1 | ||||
lim n→∞ (√n2(1+ | −n)= lim n→∞ (n√1+ | −n)= lim n→∞ [n(√1+ | −1)]= | |||
n2 | n2 | n2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |