x+2 | ||
Oblicz całkę nieoznaczoną: √ | ||
x |
x+2 | ||
∫( | )1/2 dx | |
x |
x+2 | 2 | |||
Podstawimy t2= | , x= | |||
x | t2−1 |
2 | 2t | 2 | ||||
całka = ∫t ( | )' dt = | − ∫ | dt | |||
t2−1 | t2−1 | t2−1 |
2t | 1 | 1 | 2t | t−1 | ||||||
= | − ∫( | − | ) dt= | − ln| | | | |||||
t2−1 | t−1 | t+1 | t2−1 | t+1 |
x+2 | ||
t2 = | ||
x |
2 | ||
x = | ||
t2−1 |
2 | 4t | |||
dx = − | *2t = − | |||
(t2−1)2 | (t2−1)2 |
4t | t2 | |||
J = ∫√t2*(− | )dt = −4∫ | dt = | ||
(t2−1)2 | (t2−1)2 |
t2 | ||
−4∫ | dt | |
(t−1)2(t+1)2 |
t2 | A | B | C | D | |||||
= | + | + | + | ||||||
(t−1)2(t+1)2 | (t−1)2 | t−1 | (t+1)2 | t+1 |
x+2 | ||
Wygodniejsze będzie podstawienie t=x+x√ | ||
x |
x+2 | ||
(t−x)=x√ | ||
x |
x+2 | ||
t2−2tx+x2=x2 | ||
x |
2 | ||
t2−2tx+x2=x2(1+ | ) | |
x |
t2 | ||
x= | ||
2t+2 |
x+2 | 2t+2 | t2 | ||||
√ | = | (t− | ) | |||
x | t2 | 2t+2 |
x+2 | 2t+2 | t2+2t | |||
√ | = | ||||
x | t2 | 2t+2 |
x+2 | t+2 | |||
√ | = | |||
x | t |
2t(2t+2)−2t2 | ||
dx= | dt | |
(2t+2)2 |
t2+2t | ||
dx= | dt | |
2(t+1)2 |
t+2 | t2+2t | ||
∫ | dt | ||
t | 2(t+1)2 |
1 | (t+2)2 | ||
∫ | dt | ||
2 | (t+1)2 |
1 | ((t+1)+1)2 | ||
∫ | dt | ||
2 | (t+1)2 |
1 | (t+1)2+2(t+1)+1 | ||
∫ | dt | ||
2 | (t+1)2 |
1 | 1 | 1 | |||
(∫dt+2∫ | dt+∫ | dt) | |||
2 | t+1 | (t+1)2 |
1 | 1 | ||
((t+1)− | )+ln|t+1|+C | ||
2 | t+1 |
1 | (t+1)2−1 | |
+ln|t+1|+C | ||
2 | t+1 |
t2+2t | |
+ln|t+1|+C | |
2t+2 |
t2 | t+2 | |
+ln|t+1|+C | ||
2t+2 | t |
x+2 | x+2 | |||
x√ | +ln|x+1+x√ | |+C | ||
x | x |
x+2 | 2 | |||
t2= | =1+ | |||
x | x |
2 | ||
t2−1= | ||
x |
2 | ||
x= | ||
t2−1 |
1 | 1 | b−a | |||
− | = | ||||
t+a | t+b | (t+a)(t+b) |
2 | 1 | 1 | ||||
Zatem rozkład | = | − | piszemy od ręki. | |||
t2−1 | t−1 | t+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |