ΔABC jest podobny do Δ EFC
| x | H | x | 15 | 8 | |||||
= | ⇒ | = | ⇒ y = | x | |||||
| y | 8 | y | 8 | 15 |
| 1 | ||
PABC = | *16*15 = 120 | |
| 2 |
| 1 | ||
PEFC = | *PABC = 60 | |
| 2 |
| 8 | ||
60= x* | *x | |
| 15 |
| 15√2 | ||
x = | ||
| 2 |
| 30 −15√2 | ||
h = | ||
| 2 |
h2 + 82 = 172
h = 15
| h | h1 | ||
= | |||
| 8 | x |
| 2x*h1 | 2x+16 | ||
= | * (h−h1)
| ||
| 2 | 2 |
| 15x | ||
h1 = | ||
| 8 |
| 15x | 15x | |||
4x * | = 30x + 240 − 16* | |||
| 8 | 8 |
| 15x | ||
h1 = | = 7,5√2
| |
| 8 |
| 8√2 + 16 | ||
P = | * 7,5√2
| |
| 2 |
h2 = h−h1 = 15 − 7,5√2
a do Pola którego nie trzeba było liczyć wsadziłem wysokość trójkąta
ale do h1 jest dobrze