3√a | ||
Wiedząc, że logab a = 4 oblicz logab | ||
√b |
3√a | ||
logab | = logab3√a − logab√b = 13logaba − 12logabb= | |
√b |
1 | 1 | |||
= 43 −12 | = 43 −12 | = | ||
logbab | logba +logbb |
1 | ||
=43 −12 | ||
logba +1 |
1 | ||
logaba = | =4 więc logba=−4/3 | |
logab +1 |
1 | ||
=43 −12 | =4/3+3/2 | |
−4/3 +1 |
1 | ||
to logx y= | ||
logy x |
1 | 3 | 4 | 3 | |||||
logab (a1/3*a−3/8) = logaba(1/3)+(3/8) = ( | + | )*4= | + | |||||
3 | 8 | 3 | 2 |
1 | 1 | 1 | ||||
logaba= | = | = | ||||
logaab | logaa+logab | 1+logab |
1 | |
=4 | |
1+logab |
1 | ||
logab= | =−3/4 | |
logba |
1 | ||
logba= | = −4/3 | |
−3/4 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |