| 1 | |
dx | |
| (x−2)√4x−x2 |
| 1 | |
=t | |
| x−2 |
| 1 | |
=(x−2) | |
| t |
| 1 | ||
x= | +2 | |
| t |
| 1 | ||
wynik jaki otrzymałem to − | arcsin(1/x−2)/(1/4) + C | |
| 2 |
nie rozumiem samego zapisu tego rozw.
===============================
4x−x2 = −(x2−4x) = −(x2−4x+4−4) = −[(x−2)2−4] = 4 − (x−2)2
podstawienie t = x−2
dt = dx
| 1 | 1 | 1 | ||||
∫ | dx = ∫ | dx = ∫ | dt | |||
| (x−2)√4x−x2 | (x−2)√4 − (x−2)2 | t√4 − t2 |
| 1 | 1 | 1 | 1 | |||||
∫ | dt = ∫ | 2cosu du = | ∫ | du | ||||
| t√4 − t2 | 2sinu*2cosu | 2 | sinu |
| −(x−2)dx | tdt | dt | ||||
całka = −∫ | = −∫ | =− | ||||
| (x−2)2 √4x−x2 | (4−t2)t | 4−t2 |
| 1 | 1 | 1 | 1 | 2+t | 1 | 2−√4x−x2 | ||||||||
=− | ∫ | + | )dt=− | ln | = | ln | ||||||||
| 4 | 2+t | 2−t | 4 | 2−t | 4 | 2+√4x−x2 |
| 1 | ||
∫ | dx | |
| (x−2)√4x−x2 |
| 4 | ||
x= | ||
| 1+t2 |
| 4t | ||
xt= | ||
| 1+t2 |
| 0(1+t2)−4(2t) | ||
dx= | dt | |
| (1+t2)2 |
| −8t | ||
dx= | dt | |
| (1+t2)2 |
| 4 | ||
x−2= | −2 | |
| 1+t2 |
| 4−2(1+t2) | ||
x−2= | ||
| 1+t2 |
| 2−2t2 | ||
x−2= | ||
| 1+t2 |
| 1+t2 | 1+t2 | 8t | ||
−∫ | dt | |||
| 2−2t2 | 4t | (1+t2)2 |
| 1 | ||
=−∫ | dt | |
| 1−t2 |
| 1 | ||
=∫ | dt | |
| t2−1 |
| A | B | |||
=∫ | }dt+∫ | dt | ||
| t−1 | t+1 |
| 1 | 1 | 1 | 1 | |||||
= | ∫ | }dt− | ∫ | dt | ||||
| 2 | t−1 | 2 | t+1 |
| 1 | 1 | |||
= | ln|t−1|− | ln|t+1|+C | ||
| 2 | 2 |
| 1 | t−1 | |||
= | ln| | |+C | ||
| 2 | t+1 |
| |||||||
|
| |||||||
|
| √4x−x2−x | |
| √4x−x2+x |
| (√4x−x2−x)2 | |
| 4x−x2−(x2) |
| (4x−x2)+x2−2x√4x−x2 | |
| 4x−2x2 |
| 4x−2x√4x−x2 | |
| 4x−2x2 |
| 2−√4x−x2 | |
| 2−x |
| 1 | 2−√4x−x2 | |||
= | ln| | |+C | ||
| 2 | 2−x |