1 | |
dx | |
(x−2)√4x−x2 |
1 | |
=t | |
x−2 |
1 | |
=(x−2) | |
t |
1 | ||
x= | +2 | |
t |
1 | ||
wynik jaki otrzymałem to − | arcsin(1/x−2)/(1/4) + C | |
2 |
1 | 1 | 1 | ||||
∫ | dx = ∫ | dx = ∫ | dt | |||
(x−2)√4x−x2 | (x−2)√4 − (x−2)2 | t√4 − t2 |
1 | 1 | 1 | 1 | |||||
∫ | dt = ∫ | 2cosu du = | ∫ | du | ||||
t√4 − t2 | 2sinu*2cosu | 2 | sinu |
−(x−2)dx | tdt | dt | ||||
całka = −∫ | = −∫ | =− | ||||
(x−2)2 √4x−x2 | (4−t2)t | 4−t2 |
1 | 1 | 1 | 1 | 2+t | 1 | 2−√4x−x2 | ||||||||
=− | ∫ | + | )dt=− | ln | = | ln | ||||||||
4 | 2+t | 2−t | 4 | 2−t | 4 | 2+√4x−x2 |
1 | ||
∫ | dx | |
(x−2)√4x−x2 |
4 | ||
x= | ||
1+t2 |
4t | ||
xt= | ||
1+t2 |
0(1+t2)−4(2t) | ||
dx= | dt | |
(1+t2)2 |
−8t | ||
dx= | dt | |
(1+t2)2 |
4 | ||
x−2= | −2 | |
1+t2 |
4−2(1+t2) | ||
x−2= | ||
1+t2 |
2−2t2 | ||
x−2= | ||
1+t2 |
1+t2 | 1+t2 | 8t | ||
−∫ | dt | |||
2−2t2 | 4t | (1+t2)2 |
1 | ||
=−∫ | dt | |
1−t2 |
1 | ||
=∫ | dt | |
t2−1 |
A | B | |||
=∫ | }dt+∫ | dt | ||
t−1 | t+1 |
1 | 1 | 1 | 1 | |||||
= | ∫ | }dt− | ∫ | dt | ||||
2 | t−1 | 2 | t+1 |
1 | 1 | |||
= | ln|t−1|− | ln|t+1|+C | ||
2 | 2 |
1 | t−1 | |||
= | ln| | |+C | ||
2 | t+1 |
| |||||||
|
| |||||||
|
√4x−x2−x | |
√4x−x2+x |
(√4x−x2−x)2 | |
4x−x2−(x2) |
(4x−x2)+x2−2x√4x−x2 | |
4x−2x2 |
4x−2x√4x−x2 | |
4x−2x2 |
2−√4x−x2 | |
2−x |
1 | 2−√4x−x2 | |||
= | ln| | |+C | ||
2 | 2−x |