x+1 | x+1 | t−3−1 | ||||
∫ | dx = ∫ | dx |t=x+3, dt=dx, x=t−3| = ∫ | dt = | |||
x2+6x+13 | (x+3)2+4 | t2+4 |
t−2 | ||
∫ | = | |
t2+4 |
1 | 2t | 2 | 1 | 1 | t | 1 | |||||||
∫ | dt − ∫ | dt = | ln|t2+4| + | arctg | = | ||||||||
2 | t2+4 | t2+4 | 2 | 2 | 2 | 2 |
1 | x+3 | |||
ln|x2+6x+13| + | arctg | +C | ||
2 | 2 |
1 | 1 | x+3 | ||||
( | ln|x2+6x+13|+ | arctg | )'= | |||
2 | 2 | 2 |
1 | 2x+6 | 1 | 1 | ||||
= | * | + | = | ||||
2 | x2+6x+13 | 4 | ((x+3)/2)2+1 |
x+3 | 1 | x+4 | ||||
= | + | = | ||||
x2+6x+13 | x2+6x+13 | x2+6x+13 |
x+1 | 1 | 2x+6 | 1 | |||||
∫ | dx= | ∫ | dx − 2∫ | dx | ||||
x2+6x+13 | 2 | x2+6x+13 | (x+3)2+4 |
1 | x+3 | |||
= | ln(x2+6x+13) − atan | |||
2 | 2 |