Oblicz ∫∫_D f(x,y)dxdy
delfin_pływa_delfinem: Oblicz ∫∫D f(x,y)dxdy
f(x,y)= xy, D: trójkąt ABC, gdzie: A(0,0) ,B(3,0) , C(0,6)
f(x,y)= sin (x+y), D: y=0, y=x, x+y= \pi /2
f(x,y)= xy2, D: y=x2, x+y=2
14 lut 20:26
Mila:
a)
A(0,0) ,B(3,0) , C(0,6)
Prosta BC
y=ax+6 i a*3+6=0⇔a=−2
y=−2x+6
granice całkowania
0≤x≤3
0≤y≤−2x+6
∫
03[∫
0y=−2x+6(xy)dy]dx=
| 1 | |
=∫03( [ |
| x*y2]0−2x+6)dx= |
| 2 | |
| 1 | |
=∫03( |
| x*(−2x+6)2−0)dx= |
| 2 | |
=∫
03(2x
3−12x
2+18x) dx=
| 2 | | 1 | | 1 | |
=[ |
| *x4−12* |
| x3+18* |
| x2}]03= |
| 4 | | 3 | | 2 | |
====================
14 lut 22:19