Liczby zespolone
calineczka17: e
z = e
−z , z=? gdzie z ∊ℂ.
wynik z wolframa znam ale czy rozwiązanie jest ok
z=a+bi
z=|r| [ cos(α) + i*sin(α) ]
z= |r| e
iα
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−zatem:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L = e
z = e
a+bi = e
ae
bi
P = e
−z = e
−a−bi = e
−ae
−bi −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−zestawiamy to co
mamy:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L=P
e
ae
bi = e
−ae
−bi −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−myślimy o tym jak o: z= |r| e
iα
−−−−−−−−gdzie:−−−−−−−−−−−−−−
e
a = |r| oraz e
−a=|r| −−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−z uwagi na to że e
x≥0 dla każdego x ∊ ℛ, więc−−−−−−−−−−
−−pytanie kiedy "promienie sa
równe"−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e
a=e
−a ========> a=0;==========> e
0=1−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−zatem,
|r|=1−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−zadanie sprowadza się do
postaci:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1*e
bi = 1*e
−bi =====> e
bi = e
−bi −−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−co interpretujemy jako z= |r| e
iα −−−więc−−−
e
αi = e
−αi−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−− −−−−−−widzimy że pachnie sprzężeniem
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[ już dawno pachniało
]−−−−−−−−−−−−−−−−−
więc potraktujemy teraz jako:−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−z=|r| [ cos(α) + i*sin(α) ]
cos(α) + i*sin(α) = cos(−α) + i*sin(−α) −−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−co jest równe:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
cos(α) + i*sin(α) = cos(α) − i*sin(α) −−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−teraz porównujemy cz Re i cz Im−−−−−−−−−−−−−−−−−
cos(α) = cos(α) oraz i*sin(α) = −i*sin(α) −−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−zatem widzimy że dla sinus musi się zerować−−−−−−−
−−−−−−−−a taka sytuacja ma miejsce tylko dla α = nπ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−zatem −−−−−−−−−−−−−−−−−−−
α = nπ −−−−−−−−−−−przypomnienie że b=α ; a=0 −−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−więc już mamy nasze z = a+bi−−−−−−−−−−−−−
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
z = a+bi −−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−z=0+nπi gdzie n∊ℤ.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
a