x4+1 | ||
∫ | dx | |
x4−1 |
x4 | 1 | |||
∫ | + ∫ | |||
(x−1)(x+1)(x2+1) | (x−1)(x+1)(x2+1) |
x4+1 | x4−1+2 | |||
∫ | dx = ∫ | dx = | ||
x4−1 | x4−1 |
x4−1 | 2 | |||
∫ | dx + ∫ | dx = | ||
x4−1 | x4−1 |
x4−1+2 | 2 | |||
∫ | dx=∫dx+∫ | dx | ||
x4−1 | (x2+1)(x2−1) |
(x2+1)−(x2−1) | ||
=∫dx+∫ | dx | |
(x2+1)(x2−1) |
dx | dx | |||
=∫dx+∫ | −∫ | |||
x2−1 | x2+1 |
1 | (x+1)−(x−1) | dx | ||||
=∫dx+ | ∫ | dx −∫ | ||||
2 | (x+1)(x−1) | x2+1 |
1 | dx | dx | dx | |||||
=∫dx+ | (∫ | −∫ | ) −∫ | |||||
2 | x−1 | x+1 | x2+1 |
1 | x−1 | |||
=x+ | ln| | |−arctan(x)+C | ||
2 | x+1 |