| x*earctgx | ||
∫ | dx | |
| (1+x2)3/2 |
| x | earctgx | |||
u = | , dv = | dx | ||
| √1+x2 | 1+x2 |
| |||||||||||
du = | dx , v = earctgx | ||||||||||
| 1 + x2 |
| x | earctgx | |||
u = | , dv = | dx | ||
| √1+x2 | 1+x2 |
| 1 | ||
du = | dx ,v = earctgx | |
| (1+x2)√1+x2 |
| xearctgx | xearctgx | earctgx | ||||
∫ | dx = | − ∫ | dx | |||
| (1+x2)3/2 | √1+x2 | (1+x2)3/2 |
| 1 | earctgx | |||
u = | , dv = | dx | ||
| √1+x2 | 1+x2 |
| |||||||||||
du = | dx, v = earctgx | ||||||||||
| 1+x2 |
| 1 | earctgx | |||
u = | , dv = | dx | ||
| √1+x2 | 1+x2 |
| x | ||
du = − | dx , v = earctgx | |
| (1+x2)√1+x2 |
| xearctgx | xearctgx | |||
∫ | dx = | − | ||
| (1+x2)3/2 | √1+x2 |
| earctgx | xearctgx | |||
( | − ∫− | ) | ||
| √1+x2 | (1+x2)3/2 |
| xearctgx | (x−1)earctgx | |||
∫ | dx = | − | ||
| (1+x2)3/2 | √1+x2 |
| xearctgx | ||
∫ | dx | |
| (1+x2)3/2 |
| xearctgx | (x−1)earctgx | |||
2∫ | dx = | +C1 | ||
| (1+x2)3/2 | √1+x2 |
| xearctgx | 1 | (x−1)earctgx | |||
∫ | dx = | + C | |||
| (1+x2)3/2 | 2 | √1+x2 |