x+1 | ||
wiedząc, że f(x+2)= | podaj zbiór wartości funkcji f(x) | |
x2 −1 |
1 | 1 | |||
(− ∞, − | )u(− | ,0)u(0, ∞) | ||
2 | 2 |
(x − 2) + 1 | ||
f(x) = | ||
(x − 2)2 − 1 |
x+1 | ||
f(x+2)= | , D=R−{−1,1} | |
x2−1 |
x+1 | x+2−1 | |||
f(x+2)= | = | = | ||
(x+1)(x−1) | (x+2−1)(x+2−3) |
(x+2)−1 | ||
f(x+2)= | ||
((x+2)−1)((x+2)−3) |
x−1 | ||
f(x)= | , D=R−{1,3} | |
(x−1)(x−3) |
x−1 | 1 | |||
f(x)= | = | |||
(x−1)(x−3) | x−3 |
x+1 | x+1 | 1 | ||||
f(x+2)= | = | = | , | |||
x2−1 | (x+1)(x−1) | x−1 |
1 | 1 | |||
=− | , | |||
−1−1 | 2 |
1 | ||
tym samym również f(x)∊R\{− | ,0} − dobra jest ostatnia odpowiedź. | |
2 |