| x2 | |
| x2−1 |
| lnx | ||
2. oblicz całkę ∫ | dt | |
| x3 |
| 1 | √2 | √2 | ||||
√−i = − √ i = | √ − 2i = | √( 1 − i)2 = | *(1 − i) | |||
| √2 | 2 | 2 |
| √2 | ||
√ − i = − | *(1 + i) | |
| 2 |
| 3π | 3π | |||
−i = cos | +i*sin | |||
| 2 | 2 |
| (3π/2)+2kπ | (3π/2)+2kπ | |||
√−i = cos | + i*sin | = | ||
| 2 | 2 |
| 3π | 3π | |||
cos( | +kπ) + i*sin( | +kπ) | ||
| 4 | 4 |
| 3π | 3π | √2 | √2 | √2 | ||||||
√−i = cos | +i*sin | = − | +i* | = | (−1+i) | |||||
| 4 | 4 | 2 | 2 | 2 |
| −π | −π | √2 | √2 | √2 | ||||||
√−i = cos | +i*sin | = | −i* | = | (1−i) | |||||
| 4 | 4 | 2 | 2 | 2 |
mam wątpliwości co do tego przejścia √−i = −√i
bo po obustronnym podniesieniu do kwadratu dostaniesz
−i = i
√−i = √−1*i = i√i