Wyznaczyć całkę nieoznaczoną
w2erka: Może ktoś pomóc rozwiązać tą całkę:
| cos(x)− cos3(x) | |
∫ |
| dx |
| esin(x) | |
8 lut 00:36
Mariusz:
∫(cos(x)−cos3(x))e−sin(x)dx
∫cos(x)(1−cos2(x))e−sin(x)dx
∫cos(x)sin2(x)e−sin(x)dx
∫(−sin2(x))(−cos(x)e−sin(x))dx=−sin2(x)e−sin(x)−∫e−sin(x)(−2sin(x)cos(x))dx
∫cos(x)sin2(x)e−sin(x)dx=−sin2(x)e−sin(x)+2∫cos(x)sin(x)e−sin(x)dx
∫cos(x)sin(x)e−sin(x)dx
∫(−sin(x))(−cos(x)e−sin(x))dx=−sin(x)e−sin(x)−∫(−cos(x)e−sin(x))dx
∫cos(x)sin(x)e−sin(x)dx=−sin(x)e−sin(x)−e−sin(x)
∫cos(x)sin2(x)e−sin(x)dx=−sin2(x)e−sin(x)−2sin(x)e−sin(x)−2e−sin(x)+C
∫cos(x)sin2(x)e−sin(x)dx=−e−sin2(x)(sin2(x)+2sin(x)+2)+C
8 lut 01:15
Mariusz:
Ostatnia linijka
∫cos(x)sin2(x)e−sin(x)dx=−e−sin(x)(sin2(x)+2sin(x)+2)+C
8 lut 01:17