2 | ||
Rozwiąż nierówność 1+log2(sin2x)+log22(sin2x)+...< | , gdzie lewa strona nierówności | |
3 |
pi | 5pi | 13pi | 17pi | |||||
Wyznaczyłam q=log2(sin2x) i dziedzina D=( | , | )u( | ; | ) | ||||
12 | 12 | 12 | 12 |
1 | 2 | ||
< | −> (1+2log2(sin2x))(3−3log2(sin2x))<0 Wychodzi z tego | ||
1−log2(sin2x) | 3 |
π | ||
sin 2x>0 ⇔ 2x∊(0+2kπ; π+2kπ) ⇔ x∊(kπ; | +kπ) | |
2 |
1 | ||
log2(sin2x)<1=log22 i log2(sin 2x)>−1=log2 | ||
2 |
1 | ||
sin 2x < 2 (zawsze) i sin 2x > | ||
2 |
π | 5π | |||
2x∊( | +2kπ; | +2kπ) | ||
6 | 6 |
π | 5π | |||
x∊( | +kπ; | +kπ) | ||
12 | 6 |
π | π | |||
x∊( | +kπ; | +kπ) | ||
12 | 2 |
3−2(1−t) | |
<0 | |
3(1−t) |
1+2t | |
<0 | |
3(1−t) |
1 | ||
t∊(−∞; − | )∪(1;+∞) | |
2 |
1 | ||
log2(sin 2x) < − | ∨ log2(sin 2x)>1 | |
2 |
1 | 1 | √2 | ||||
log2(sin 2x)<− | = log2 | = log2 | ||||
2 | √2 | 2 |
√2 | ||
sin 2x < | ||
2 |
π | 3π | |||
2x∊(0+2kπ; | +2kπ)∪( | +2kπ; 2π+2kπ) | ||
4 | 4 |
π | 3π | |||
x∊(kπ; | +kπ)∪( | +kπ; π+kπ) | ||
8 | 8 |
π | π | π | 3π | |||||
x∊[( | +kπ; | +kπ)]∩[(kπ; | +kπ)∪( | +kπ; π+kπ)] | ||||
12 | 2 | 8 | 8 |
π | π | π | 3π | π | π | 3π | π | |||||||||
( | ; | )∩[(0; | )∪( | ;π)] = ( | ; | )∪( | ; | ) | ||||||||
12 | 2 | 8 | 8 | 12 | 8 | 8 | 2 |