x | |
= 1 x ≠ 0,5 | |
1 − 2 x |
1 | ||
x = | ||
3 |
a1 | x | |||
S = | = | |||
1 − q | 1 −2 x |
3 | 3 | x | ||||
A jak w takim razie oblicyć w analogiczny sposób równanie 1+ | + | +...= | . | |||
x | x2 | 3 |
3 | ||
Jakoś nie mogę znaleźć sposobu. Próbowałam wyciągnąc | przed nawias albo wymnożyć przez | |
x |
3 | ||
i dopiero wyciągać ale nic mi nie wychodzi | ||
x |
1 | ||
q= | , x≠0 i | |
x |
1 | ||
| | |<1 | |
x |
3 | 3 | 3 | x | |||||
1+( | + | + | +...)= | |||||
x | x2 | x3 | 3 |
1 | 3 | 3 | x | |||||
1+ | *(3+ | + | +...)= | |||||
x | x | x2 | 3 |
1 | 3 | 3 | x | |||||
1+ | *(2+1+ | + | +...)= | |||||
x | x | x2 | 3 |
1 | x | x | ||||
1+ | *(2+ | )= | ||||
x | 3 | 3 |
2 | 1 | x | x | |||||
1+ | + | * | = | |||||
x | x | 3 | 3 |
2 | 1 | x | ||||
1+ | + | = | ||||
x | 3 | 3 |
4 | 2 | x | |||
+ | − | =0 /*(3x) | |||
3 | x | 3 |
3 | 3 | x | |||
= | + ... = | − 1 | |||
x | x2 | 3 |
3 | ||
a1 = | ||
x |
1 | ||
q = | ||
x |
a1 |
|
| 3 | ||||||||||||||||||||||
= | = | = | |||||||||||||||||||||||
1 − q |
|
| x −1 |
3 | x | ||
= | − 1 | ||
x −1 | 3 |
3 | x − 3 | ||
= | |||
x −1 | 3 |
4 − 2√10 | ||
x = | = 2 − √10 lub x = 2 + √10 | |
2 |
1 | 1 | 2 + √10 | 2 + √10 | |||||
q = | = | * | = | ⇒ I q I < 1 | ||||
x | 2 −√10 | 2 + √10 | −6 |
1 | ||
q = | < 1 ok | |
2 + √10 |
3 | 3 | x | |||
+ | + ... = | − 1 | |||
x | x2 | 3 |