2n−1 | ||
lim(n→∞)( | )n | |
2n+2 |
2n−1 | 2n+2−3 | −3 | ||||
( | )n= ( | )n = (1+ | )n = | |||
2n+2 | 2n+2 | 2n+2 |
−3 | ||
(1+ | )(2n+2)*n2n+2 | |
2n+2 |
−3 | ||
limn→∞ (1+ | )(2n+2) = e−3 | |
2n+2 |
n | 1 | |||
limn→∞ | = | |||
2n+2 | 2 |
2n−1 | 1 | 1 | ||||
( | )n = (1− | )n : (1+ | )n →e−1/2 : e = e−3/2 | |||
2n+2 | 2n | n |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |