cos√2(x+h)−cos√2x | ||
limh→0 | = | |
h |
| |||||||||||||||||
limh→0 | = | ||||||||||||||||
h |
√2x+√2x |
| ||||||||||||
−2sin | *limh→0 | = | |||||||||||
2 | h |
√2(x+h)−√2x |
| ||||||||||||
−2sin√2x*limh→0 | * | = | |||||||||||
2h |
|
(√2x+h−√2x)(√2x+h+√2x) | ||
−2sin√2x*1*limh→0 | ||
h*(√2x+h+√2x) |
2x+h−2x | ||
−2sin√2x*limh→0 | = | |
h*(√2x+h+√2x) |
h | ||
−2sin√2x*limh→0 | = | |
h*(√2x+h+√2x) |
1 | ||
−2sin√2x*limh→0 | = | |
√2x+h+√2x |
1 | −2sin√2x | sin√2x | ||||
−2sin√2x* | = | = − | ||||
√2x+√2x | 2√2x | √2x |
sinx | ||
zakładam, że już udowodniliście, że limx→0 | =1 | |
x |