| f(x)−f(0) |
| |||||||||
limx→0− | = limx→0− | = | ||||||||
| x−0 | x |
| (sin x) − x | 0−0 | |||
limx→0− | = [ | ] = (H) | ||
| x2 | 0+ |
| (cos x) −1 | 1−1 | |||
limx→0− | = [ | ] = (H) | ||
| 2x | 0− |
| −sinx | ||
limx→0− | = 0 | |
| 2 |
| f(x)−f(0) |
| |||||||||
limx→0+ | = limx→0+ | = | ||||||||
| x−0 | x |
| (sin x) − x | 0−0 | |||
limx→0+ | = [ | ] = (H) | ||
| x2 | 0+ |
| (cos x) −1 | 1−1 | |||
limx→0+ | = [ | ] = (H) | ||
| 2x | 0+ |
| −sinx | ||
limx→0+ | = 0 | |
| 2 |
| f(x)−f(0) | ||
limx→0 | istnieje i jest skończona (dokładnie =0) | |
| x−0 |