f(x)−f(0) |
| |||||||||
limx→0− | = limx→0− | = | ||||||||
x−0 | x |
(sin x) − x | 0−0 | |||
limx→0− | = [ | ] = (H) | ||
x2 | 0+ |
(cos x) −1 | 1−1 | |||
limx→0− | = [ | ] = (H) | ||
2x | 0− |
−sinx | ||
limx→0− | = 0 | |
2 |
f(x)−f(0) |
| |||||||||
limx→0+ | = limx→0+ | = | ||||||||
x−0 | x |
(sin x) − x | 0−0 | |||
limx→0+ | = [ | ] = (H) | ||
x2 | 0+ |
(cos x) −1 | 1−1 | |||
limx→0+ | = [ | ] = (H) | ||
2x | 0+ |
−sinx | ||
limx→0+ | = 0 | |
2 |
f(x)−f(0) | ||
limx→0 | istnieje i jest skończona (dokładnie =0) | |
x−0 |