granice
pomocy:
lim sin(x−pi/6)
−−−−−−−−−−−−−−−−−−
x→pi/6 √3/2 −cosx bez De La'Hospitala
19 sty 21:51
Mila:
Mianownik:
3 | | π | | | | | |
| −cosx=cos |
| −cosx=−2*sin |
| *sin |
| = |
2 | | 6 | | 2 | | 2 | |
| x | | π | | x | | π | |
=2*sin( |
| + |
| )*sin( |
| − |
| ) |
| 2 | | 12 | | 2 | | 12 | |
Licznik:
| π | | x | | π | | x | | π | |
sin(x− |
| )=2*sin ( |
| − |
| )*cos( |
| − |
| ) |
| 6 | | 2 | | 12 | | 2 | | 12 | |
lim
x→π6
| x | | π | | x | | π | | 2sin ( |
| − |
| )*cos( |
| − |
| ) | | 2 | | 12 | | 2 | | 12 | |
| |
| = |
| x | | π | | x | | π | | 2sin( |
| + |
| )*sin( |
| − |
| ) | | 2 | | 12 | | 2 | | 12 | |
| |
19 sty 22:09