matematykaszkolna.pl
Granice Ziomrk:
 n 
Uzasadnic ze ciag o wyrazie ogólnym bn=cos

×π nie ma granicy
 3 
10 sty 21:11
Ziomrk:
 n 
bn=cos

 3 
10 sty 21:20
Ziomrk: Wydaje mi się, że muszę znaleźć dwa podciagi i pokazać że mają różne granice ?
10 sty 21:23
Lech:
 n 
Uzywaj nawiasow , zapis : bn = cos

*π oznacza ze liczba π jesr mnozona do
 3 
calosci , jezeli liczba π ma byc w argumencie cos () to nalezy zapisac
 n π 
bn = cos (

)
 3 
10 sty 21:26
Ziomrk: Mam zapisane tak jak w poście 21:20
10 sty 21:29
Ziomrk:
 n 
bn=cos

π o tak
 3 
10 sty 21:31
Lech: ciag bn nie ma granicy , ma natomiast punkty skupienia , 0,1,−1 dla roznych n . poniwaz jest to funkcja ciagla i okresowa .
10 sty 21:37
Basia: weż sobie podciągi b6n i b6n+3
 6nπ 
b6n = cos

= cos(2nπ) = 1
 3 
 3(2n+1)π 
b6n+3 = b3(2n+1) − cos

= cos((2n+1)π)= −1
 3 
10 sty 21:39