Mila:
π: −x+3y+2z=0 równanie danej płaszczyzny
n
→=[−1,3,2] wektor normalny płaszczyzny⇔
wektor kierunkowy prostej prostopadłej do π to:
k
→=[−1,3,2]
k: prosta prostopadła do płaszczyzny
x=−2−t
y=1+3t
z=3+2t, t∊R
−(−2−t)+3*(1+3t)+2*(3+2t)=0
| 17 | | 19 | | 20 | |
P'=(− |
| ,− |
| , |
| ) |
| 14 | | 14 | | 14 | |
| |−(−2)+3*1+2*3| | | 11 | | 11√14 | |
d(P,π)= |
| = |
| = |
| |
| √12+32+22 | | √14 | | 14 | |
spr.
|PP'|=
√(−1714+2)2+(−1914−1)2+(2014−3)2=
| √112+332+222 | | √1694 | | √14*112 | | 11√14 | |
= |
| = |
| = |
| = |
| |
| 14 | | 14 | | 14 | | 14 | |