x +arctgx | ∞ | (x + arctg x)' | 1 | |||||
a+ = lim x −−> +∞ | = [ | ] H = | = | = 0 | ||||
x | ∞ | (x)' | x2 + 1 |
1 | 1+x2+1 | x2+2 | ||||
(x+arctgx)' = 1+ | = | = | ||||
1+x2 | x2 | x2 |
x+arctgx | arctgx | π/2 | ||||
a=limx→+∞ | = limx→+∞(1+ | ) = 1+[ | ] = 1+0 = 1 | |||
x | x | +∞ |
π | ||
b = limx→+∞(x+arctgx−1*x) =limx→+∞arctgx = | ||
2 |
π | ||
asymptota ukośna prawostronna y=x+ | ||
2 |
π | ||
analogicznie policz lewostronną (ma wyjść y=x− | ) | |
2 |