ln(2(x+h)+3)−ln(2x+3) | ln(2x+2h+3)−ln(2x+3) | ||
= | |||
h | h |
1 | 2x+2h+3 | 1 | 2h | |||||
= | ln( | )= | ln(1+ | ) | ||||
h | 2x+3 | h | 2x+3 |
2h | ||
=ln(1+ | )1/h | |
2x+3 |
2h | ||
Policzmy granice (1+ | )1/h, skorzystamy z faktu, że (1+y)1/y→e gdy y→0 | |
2x+3 |
2h | 2h | |||
(1+ | )1/h=(1+ | )2x+3/2h * 2/2x+3→e2/2x+3 | ||
2x+3 | 2x+3 |
2h | 2 | |||
A to oznacza, że granica lim ln(1+ | )1/h = ln e2/2x+3 = | |||
2x+3 | 2x+3 |