tg x | ||
= x − 2−3/2 arctg | ||
√2 |
1 | 2 | 1 | ||||
Dochodzimy do całki z funkcji | = | − | . | |||
(1+t2)(1+2t2) | 1+2t2 | 1+t2 |
1−t2 | ||
cos(x)= | ||
1+t2 |
(1−t2)2 | ||
1+cos2(x)=1+ | ||
(1+t2)2 |
(1+t2)2+(1−t2)2 | ||
1+cos2(x)= | ||
(1+t2)2 |
2(1+t4) | ||
1+cos2(x)= | ||
(1+t2)2 |
2 | ||
dx= | dt | |
1+t2 |
(1−t2)2 | (1+t2)2 | 2 | ||
∫ | dt | |||
(1+t2)2 | 2(1+t4) | 1+t2 |
1−2t2+t4 | 2(1+t4)−(1+t2)(1+t2) | |||
∫ | dt=∫ | dt | ||
(1+t4)(1+t2) | (1+t4)(1+t2) |
1 | 1+t2 | |||
=2∫ | dt−∫ | dt | ||
1+t2 | 1+t4 |
1+t2 | ||
Jeśli chodzi o całkę ∫ | dt | |
1+t4 |
| |||||||||||
∫ | dt | ||||||||||
|
1 | ||
u=t− | ||
t |
1 | ||
du=1+ | dt | |
t2 |
1 | ||
u2=t2−2+ | ||
t2 |
1 | ||
u2+2=t2+ | ||
t2 |
du | 1 |
| |||||||||||||
∫ | du= | ∫ | du | ||||||||||||
u2+2 | √2 |
|
1 | u | |||
= | arctan( | ) | ||
√2 | √2 |
1 | t2−1 | |||
= | arctan( | ) | ||
√2 | √2t |
x | 1 | tg2(x/2)−1 | ||||
=2arctg(tg( | ))− | arctg( | ) | |||
2 | √2 | √2tg(x/2) |
1 | √2 | |||
=x− | arctan(− | ) | ||
√2 | tg(x) |
1 | √2 | |||
=x+ | arctan( | ) | ||
√2 | tg(x) |
1 | tg(x) | |||
=x− | arctan( | )+C | ||
√2 | √2 |
1 | ||
cos2x = | ||
1+t2 |
dt | ||
dx = | ||
1+t2 |
cos2x | dt | 1 | 1 | |||||
∫ | dx = ∫ | = ∫( | − | )dt | ||||
1+cos2x | (2+t2)(1+t2) | 1+t2 | 2+t2 |
1 | t | 1 | tg x | |||||
= atan t − | atan | = x − | atan | |||||
√2 | √2 | √2 | √2 |