| 1 | ||
f(x)= | ||
| 1−x2 |
| 2x | ||
f'(x)= | ||
| (1−x2)2 |
| 2x | ||
f"(x)= [ | ]' = | |
| (1−x2)2 |
| (2x)'(1−x2)2−2x[((1−x2)2)'] | 2(1−2x2+x4)−2x(1−2x2+x4)' | |||
= | ||||
| ((1−x2)2)2 | (1−x2)4 |
| 2−4x2+2x4−2x(−4x+4x3) | 2−4x2+2x4+8x2−8x4 | |||
= | = | = | ||
| (1−x2)4 | (1−x2)4 |
| −6x2+4x2+2 | |
w wolframie inaczej mi pokazuje gdzie zrobiłem bład ![]() | |
| (1−x2)4 |
| −6x4+4x2+2 | |
| (1−x2)4 |
| 2−4 | 1 | 2+4 | ||||
x2= | =− | lub x2= | =1 | |||
| 6 | 3 | 6 |
| 1 | ||
−2(3x4−2x2−1)=−2*3*(x2+ | )*(x2−1)=−2*(3x2+1)*(x2−1) | |
| 3 |
| 1 | 1 | 1 | 1 | |||||
f(x)= | = | ( | + | ) | ||||
| 1−x2 | 2 | 1−x | 1+x |
| 1 | 1 | 1 | ||||
f'(x)= | ( | − | ) | |||
| 2 | (1−x)2 | (1+x)2 |
| 1 | 1 | |||
f''(x)= | + | |||
| (1−x)3 | (1+x)3 |