Granica
X: lim x=>∞ ((2arctg(3x))/π)2x
18 gru 21:23
piotr: ((2arctg(3x))/π)
2x = e
2x ln((2arctg(3x))/π)
| ln(2 arctg(3x)/π) | | 3 | x2 | |
limx→+∞2 |
| = |
|
| |
| 1/x | | ((9 x2 + 1) arctg(3 x)) | −1 | |
19 gru 15:19
piotr: | 3 | | 4 | |
limx→+∞2 |
| *(−x2) = − |
| |
| (9 x2 + 1) arctg(3 x) | | 3π | |
ostatecznie
limx→+
∞(2arctg(3x)/π)
2x = e
−4/(3π)
19 gru 15:25