1 | ||
lim x→0 (cosx)do potęgi | ||
sin2x |
sin2x | 1 | |||
(1 + | ) do potęgi | |||
cosx +1 | sin2x |
ln(cos(x)) | ||
= lim e | ||
sin2x |
1 | sinx | |||
(ln(cosx))' = | * (−sinx) = − | |||
cosx | cosx |
(ln(cosx))' |
| 1 | |||||||||||||
stad | = | = − | |||||||||||||
(sin2x)' | 2sinxcosx | 2cos2x |
1 | 1 | |||
lim cosx1/sin2x = lim e−1/2cos2x = e−1/2 = | = | |||
e1/2 | √e |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |