Geometria
Pinkie: W trójkącie ABC kąty α, β, γ są kątami wewnętrznymi. Wykaż, że jeżeli sinα=2cosγ*sinβ to
trójkąt ABC jest równoramienny
17 gru 18:45
Eta:
α+β+γ=180o ⇒ α= 180o−(β+γ)
to sinα= sin(β+γ)= sinβ*cosγ+sinγ*cosβ
więc z treści zadania:
sinβcosγ+sinγcosβ=2sinβcosγ ⇒ sinβcosγ−sinγcosβ=0 ⇒ sin(β−γ)=0 ⇒ β=γ
więc ten trójkąt jest równoramienny
c.n.w
17 gru 18:59
Pinkie: Dziękuję
17 gru 19:08
Eta:
17 gru 19:10