| 1 | 3n | |||
an= | cosn3− | |||
| 2n | 2n+1 |
| 1 | 1 | |||
Czy moge | cosn3 potraktowac jako iloczyn ciagu zbieznego do 0 (czyli | ) i | ||
| 2n | 2n |
| 1 | ||
wtedy granica | *cosn3 bedzie 0 wiec granica ciagu an bedzie (−3/2) | |
| 2n |
Tweirdzenia mam w repetytorium
| n*sin(n!+√n2+n | ||
an= | ||
| n2+1 |
| n | ||
Wiec to byloby ze ciag zbiezny do 0 to bylby ciag | a ciag ograniczony to ciag | |
| n2+1 |
| 1 | 1 | 1 | 1 | |||||
an= | + | + | +.......+ | |||||
| 1*2 | 2*3 | 3*4 | n(n+1) |
| 1 | 1 | 1 | |||
= | − | ||||
| n(n+1) | n | n+1 |
| 1 | ||
an= 1− | ||
| n+1 |
| 1 | ||
limn →∞1− | =1 | |
| n+1 |
| 1 | ||
bo | zbiega do zera | |
| n+1 |
| 1 | |
dąży do 0. | |
| n+1 |